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Abstract

Purpose  While distinct soil microbiomes and indi-
vidual soil microbial taxa can alter particular plant
traits under highly controlled conditions, little is
known about the role of particular microbial taxa and
microbial functions within complex soil microbial
communities for mediating plant phenotypes or if the
strength of microbial mediation of plant phenotype
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varies among plant species or plant phenotypic traits.
Examining how the plant phenotype spectrum is
influenced by the taxonomic and functional compo-
sition of complex soil microbial communities allows
for a more accurate understanding of the biotic envi-
ronmental drivers of plant phenotype.

Methods Using rhizosphere soil collected from field
sites, we conducted a microbiome transfer glasshouse
experiment to test the hypothesis that the taxonomic
and functional composition of different soil microbi-
omes would differentially shift growth, physiological
or reproductive phenotypes of three Solidago species.
Results We found that soil microbiome inocula-
tions influenced Solidago growth traits more than
physiological and reproductive traits. We found that
root growth of one of the Solidago species was nega-
tively correlated with 77% of the indicator bacterial
and fungal taxa from one of the soil microbiome
treatments.

Conclusions Soil microbial mediation of plant phe-
notype varies by plant traits, is not universal across
plant species, and can be associated with a small
number of microbial taxa. This study illustrates that
specific microbial taxa within a soil microbiome are
associated with shifts in plant phenotype by pinpoint-
ing important individual microbial taxa from complex
field soil microbial communities.

Keywords Soil microbiome - Soil microbial

communities - Plant phenotype - Plant-soil
interactions - Solidago
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Introduction

In the past 10-15 years, numerous and diverse relation-
ships discovered between plants and the soil microbi-
ome have shifted the long-established paradigm of plant
phenotype as the sole product of interactions between
a plant’s genes (G) and the abiotic environment (E)
(i.e., G x E interactions; Clausen et al. 1948; Conner
and Hartl 2004) to that of a ‘holobiont’ interpretation
(G x G x E interactions), in which microbes at the root-
soil interface serve as a reservoir of additional genes
and functions for the host plant (Zilber-Rosenberg and
Rosenberg 2008; Bordenstein and Theis 2015; Vanden-
koornhuyse et al. 2015; Theis et al. 2016). Multiple ave-
nues of research have informed this updated perspec-
tive. At a fine scale, single inoculation studies—mostly
targeted towards crop health and production—have
determined that particular individual soil microbial taxa
can modify plant traits, such as growth phenotypes or
flowering phenology. In isolation, bacterial genera such
as Microbacterium, Pseudomonas, and Enterobac-
ter, for example, can increase desiccation tolerance in
some crop varieties by stimulating trehalose produc-
tion (Vilchez et al. 2016; Niu et al. 2018). Similarly,
plant growth promoting rhizobacteria assist in nutrient
acquisition of nitrogen, phosphate, potassium, and iron
by producing various phytohormones (Ali et al. 2009;
Mishra et al. 2009; Ofek-Lalzar et al. 2014). Moreover,
whole microbiome soil inoculation studies have docu-
mented microbial mediation of a diversity of plant phe-
notypes including physiological traits such as photosyn-
thesis (Friesen et al. 2011; Lau and Lennon 2011; Zhu
et al. 2016; Kannenberg and Phillips 2017), phenologi-
cal traits such as flowering time (Wagner et al. 2014;
Panke-Buisse et al. 2015) and reproductive traits such
as fruit (Lau and Lennon 2011, 2012) and flower pro-
duction (Lau and Lennon 2012).

At a broad scale, earlier research examining plant
growth responses to bulk soil inoculations have shown
that individual soil microbes collectively, referred to as
a microbiome, can influence plant phenotype (Bever
1994; Bever et al. 1997; Ehrenfeld et al. 2005; Mangan
et al. 2010; Putten et al. 2013). The mechanisms that
underlie plant-soil feedbacks are largely attributed to
the fact that phenotypically distinct plants can differ-
entially alter both the abiotic and microbial composi-
tion of the surrounding soil, in part due to differences
in organic matter turnover, and root chemical exudates
that in turn favor distinct communities of microbes (Hu
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et al. 2018; Jones et al. 2019). The identification of
core rhizosphere microbiome members for a diversity
of plant taxa (Schweitzer et al. 2008; Lundberg et al.
2012; Colin et al. 2017; Yeoh et al. 2017; Fitzpatrick
et al. 2018; Hugoni et al. 2018; Timm et al. 2018; Lasa
et al. 2019; Singer et al. 2019) provides further evi-
dence for the ability of different plants to recruit par-
ticular soil microbial taxa. As such, phenotypically dis-
tinct plants may, in some scenarios, alter the immediate
surrounding soil (i.e., rhizosphere soil) by promoting
taxonomically and/or functionally distinct microbial
communities.

While findings from these research fields show
that both isolated individual microbial taxa and
diverse soil microbial communities can influence
plant function, pinpointing the important individual
microbial taxa and functions within complex soil
microbial communities remains a challenge. Iden-
tifying significant individuals or functions within
complex microbial communities is crucial for
advancing ecology of natural ecosystems because
plants in natural landscapes interact simultaneously
with a multitude of beneficial, benign, and patho-
genic microbes (Morris et al. 2007; Zolla et al.
2013; Putten et al. 2016). Beneficial or deleterious
effects from individual taxa may be enhanced or
suppressed by interactions with other nearby micro-
bial members. Examining how the taxonomic and
functional composition of soil microbial communi-
ties affects plant phenotype will allow for a more
accurate understanding of the surrounding biotic
environmental drivers of plant phenotype.

The goal of this study was to identify the strength
of soil microbial mediation for different plant phe-
notypes, the consistency of these relationships
among plant species, and identify specific soil
microbial taxa and/or functions in complex field
soil communities that are associated with particular
plant phenotypes. Using field soils associated with
three phenotypically distinct Solidago species, we
conducted a glasshouse experiment and inoculated
three Solidago species in separate treatments of each
field-collected soil and microbiome. We tested the
following hypotheses: 1) Soil microbiome source
inoculation will differentially alter phenotypes of
three Solidago species; 2) Soil microbiome source is
associated with distinct taxonomic and/or functional
soil microbial communities; 3) Specific microbial
taxa and/or microbial functions are associated with
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particular Solidago phenotypes. Shifts in Solidago
phenotypes between microbiome source treatments
would indicate that plant traits are influenced by
variation in microbial taxonomic and/or functional
composition. If Solidago traits varied in response
to microbiome treatments, this would indicate con-
ditional effects of soil microbial mediation of plant
phenotype. If Solidago species varied in response
to microbiome treatments, this would indicate that
the strength of soil microbial mediation varies by
plant species. Correlations between specific micro-
bial taxa and/or microbial functions and particular
Solidago phenotypes would provide evidence for the
importance of individual taxonomic or functional
components within a microbiome for influencing
plant phenotype.

Materials and methods
Study system

Solidago species are a model system for this study
because they commonly occur across North America,
with 120 species native to the United States (Sem-
ple 2016) that grow in variable habitats, with differ-
ent morphologies and phenotypes. We chose to use
S. caesia, S. flexicaulis, and S. gigantea in this study
because they were the most abundant Solidago spe-
cies found across our sampling range (northeastern
TN) and vary in evolutionary history, leaf, stem,
and flower morphology and habitat preference. Soli-
dago caesia and S. flexicaulis grow in woodlands and
belong to the Glomerulifloraea subgroup of Solidago
(Semple 2016). Solidago gigantea grows in mead-
ows and fields and belongs to the Triplinerviae sub-
group (Semple 2016). Furthermore, previous work
has found evidence for the influence of interspecific
and genotypic diversity on above- and belowground
biomass of S. altissima and S. gigantea (Genung et al.
2012, 2013), suggesting that some Solidago pheno-
types may be mediated in part by modifications of
soil biota from neighboring Solidago species.

Preliminary field surveys
To assess differences in plant phenotypes among the

three Solidago species, we conducted field surveys
of three geographically distinct populations of each

species, all located throughout northeastern Tennes-
see, U.S.A. In May 2017, we measured stem height,
stem base diameter, specific leaf area (SLA), and
stomatal density of 15 randomly selected putative
genotypes of each species (S. caesia, S. flexicaulis,
and S. gigantea) in northeastern TN for a total of 45
individuals per species (Fig. 1a, Table S1). Solidago
caesia and S. flexicaulis co-occur at one of the nine
sites, whereas the other eight sites have single species
composition (Table S1). The field survey confirmed
that the three species vary in this suite of growth and
physiological phenotypes (Table S2).

Soil collection and processing

To assess Hypothesis 2 that the soil microbiome
sources have distinct taxonomic and/or functional
microbial communities, we collected rhizosphere soil
from each genotype in the field surveys by collecting
soil attached to the roots of each plant (Fig. 1b). We
pooled individual soil samples by field site to repre-
sent an average belowground microbiome of three soil
sources (n=3 sites per soil source). While we tried to
collect soil microbes that were only associated with
the rhizosphere soil of each plant species, it is likely
that we also captured microbes that are representa-
tive of surrounding non-rhizosphere soil (i.e., bulk
soil). As described previously, S. caesia and S. flexi-
caulis grow in forested habitat and S. gigantea grows
in meadow/field habitat. Some climatic and edaphic
soil characteristics including mean annual tempera-
ture, soil organic matter content, and soil bulk density
slightly varied among the three groups of Solidago
species sites (Table S3), which may be due to habitat
differences. As such, we refer to the three groups of
sites as soil “microbiome sources” rather than soils
associated with each Solidago species. Soil samples
were transported to the laboratory on ice and stored
at 0 °C until analysis at the University of Tennes-
see, Knoxville, TN, U.S.A. A 2 g subsample of soil
from each field site was stored at -80 °C for molecu-
lar analysis. We assessed the taxonomic community
composition of the soils using high-throughput ampli-
con sequencing of the V3-V4 region of the 16S rRNA
gene and the ITS2 region of the internal transcribed
spacer gene regions for bacteria and fungi, respec-
tively. Detailed molecular methods are described in
Methods S1 of the Supplementary Materials.

@ Springer
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Fig. 1 Solidago population locations, field sampling design,
and experiment design for soil inoculation experiment. a Field
sampling was conducted for three distinct natural field popu-
lations of Solidago gigantea, S. caesia, and S. flexicaulis in
northeastern TN, U.S.A. b Growth and physiology phenotypes
were measured from 15 putative genotypes at each population
for each Solidago species. Rhizosphere soil (S. caesia-associ-
ated, S. flexicaulis-associated, and S. gigantea-associated) was
collected from beneath each genotype and pooled at the site

Bioinformatics

We performed all amplicon sequence processing using
the DADA?2 platform. Primers were removed from the
16S and ITS sequences using the cutadapt function in
conda. All further amplicon sequence processing was
performed using the DADA2 pipeline (Callahan et al.
2016) Samples were normalized for sampling depth with
a variance stabilizing transformation with the DESeq2
package (Love et al. 2014). We chose this method over
the common practice of rarefaction because rarefaction
results in loss of data by using the lowest sampling depth
and it inflates variances across samples (McMurdie and
Holmes 2014). Taxonomy of ASVs was assigned using
the RDP (Wang et al. 2007) and UNITE (Abarenkov
et al. 2010) databases for bacteria and fungi, respectively.
After processing, we had 16,245 bacterial and 2,565 fun-
gal ASVs, respectively. Additionally, we assigned fungal
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level. ¢ Nursery-sourced seeds of S. caesia, S. flexicaulis, and
S. gigantea and field soil were used in a 5-month glasshouse
inoculation experiment. Seedlings of each species x nursery
population were grown in separate treatments of soil contain-
ing inoculum from microbiome sources 1, 2, and 3 collected
from the corresponding field sites. (N=3 Solidago speciesx3
seed populations X 3 microbiome sources X 3 field soil sites X3
replicates =243 total pots)

ASVs to functional guilds using the FUNGuild database
(Nguyen et al. 2016). For analyses, we assigned taxa to
one of seven broad functional guilds: arbuscular mycor-
rhizal fungi, ectomycorrhizal fungi, ericoid mycorrhizal
fungi, endophytic fungi, plant pathogenic fungi, sapro-
trophic fungi, and “other.”” We considered only FUN-
Guild assignments with a confidence ranking of “highly
probable” or “probable.” Unassigned taxa were excluded
from further guild-based analyses. Of the 2,565 fungal
ASVs, 68% (1,741 ASVs) were assigned to a fungal
guild. Of those assigned, 76% (1,328 ASVs) had a confi-
dence ranking of “highly probable” or “probable.”

We assessed functional community composition
with shotgun metagenomic sequencing, as detailed
in Methods S1 of the Supplementary Materials.
Sequences retrieved from shotgun metagenomic
sequencing were assigned to KEGG (Kyoto Ency-
clopedia of Genes and Genomes) ortholog numbers
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using the MG-RAST online annotation tool. KEGG
orthologs assign genes to microbial complexes, func-
tional sets, and metabolic pathways and are a com-
mon tool used to describe functional attributes of
microbes (Ortiz-Alvarez et al. 2018; Sorensen et al.
2019). KEGG ortholog numbers were matched to
hierarchical KEGG pathways.

Glasshouse experiment

To assess Hypotheses 1 and 3 that plant phenotypes
are in part mediated by the taxonomic and/or func-
tional composition of soil microbial communities
and that the strength of microbial mediation varies
among plant species and phenotypic traits, we con-
ducted a glasshouse experiment and grew S. caesia,
S. flexicaulis, and S. gigantea in factorial soil inocu-
lum treatments of each microbiome source. Seeds
of each Solidago species were purchased from mul-
tiple nurseries to account for intraspecific variation
in plant response to soil microbes (S. caesia: Ernst
Conservation Seeds, Meadville, PA; NorthCreek
Nurseries, Landenburg, PA; Michigan Wildflower
Farm, Portland, MI; S. flexicaulis: Ernst Conserva-
tion Seeds, Prairie Moon Nurseries, Winona, MI;
Minnesota Native Landscapes, Ostego, MN; S.
gigantea: Prairie Moon Nurseries, Minnesota Native
Landscapes). Seeds were refrigerated at 4 °C prior
to sowing, and then were sown by population into a
commercial peat moss-based, non-mycorrhizal pot-
ting mix (Premier Promix BX, containing perlite,
vermiculite, and limestone). A subset of Solidago
seeds did not withstand surface sterilization trials,
so we did not surface sterilize the seeds used in the
experiment. While it is possible that any seed-borne
microbes may have impacted plant phenotype, all
plants were grown in all soil treatments and exposed
to the same glasshouse conditions, such that any
effect of seed-borne microbes on plant pheno-
type should be equally distributed across treatment
categories.

After approximately three weeks of growth, 54 sim-
ilar-sized seedlings of each population were individu-
ally transplanted into half-gallon circular pots into soil
inoculum treatments which consisted of factorial com-
binations of microbiome source (Microbiome source
1 vs. Microbiome source 2 vs. Microbiome source 3)
(Fig. 1c). Furthermore, since soils from each field site
of each microbiome source were kept separate, seeds

were planted into three sites of Microbiome source
1, three sites of Microbiome source 2, and three sites
of Microbiome source 3. Each pot was inoculated
with approximately 5.5 g of rhizosphere soil collected
from the field (< 1% of the total pot volume) to reduce
effects of variation in soil nutrients on plant pheno-
typic responses (Troelstra et al. 2001). In total, 243 pots
were established: 3 Solidago speciesx3 seed popula-
tions X3 microbiome sources (Microbiome source 1,
Microbiome source 2, Microbiome source 3)Xx3 field
soil sites X 3 replicates =243 total pots). Pots were ran-
domly positioned in the glasshouse based on random
number assignments. All plants were treated monthly
for thrips and whiteflies throughout the experiment (0.5
tsp/gal Avid 0.15 EC insecticide, 0.5 tsp/gal AzaGuard
insecticide). Plants were equally watered from above,
as needed (approximately 4 days/week), and allowed to
grow for 5 months in a glasshouse at the University of
Tennessee.

A suite of plant phenotypes was measured during
and post-experiment. Stem height and stem diam-
eter were measured every two weeks for the first two
months of growth, then at 13 weeks and at the termi-
nation of the experiment at 20 weeks. Relative growth
rates were calculated from these data. For each indi-
vidual plant, timing of flower bud formation (here-
after referred to as “flower bud break”) and flower-
ing were monitored with daily surveys by recording
the day of the appearance of the first distinguishable
flower bud and first open flower, respectively. Prior
to termination of the experiment, an average of four
healthy and mature leaves were randomly selected per
plant, scanned using WinFOLIA software (Regent
Instruments Inc.), oven-dried at 70 °C for 72 h (Pérez-
Harguindeguy et al. 2016), and weighed to calculate
specific leaf area (cmz/g) (SLA). After five months
of growth and regular watering, each individual was
harvested and separated into shoot and root biomass
and inflorescence biomass. Shoot and root tissue was
weighed after 48 h of oven-drying at 60 °C. Prior to
drying, roots were carefully rinsed over 2 and 0.5 mm
sieves to remove lingering soil and collect all fine
roots.

Statistical analyses
In the field survey, we analyzed differences in Soli-

dago phenotypes using linear mixed-effects models
with the Imer function in the lme4 package (Bates
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et al. 2014). We built separate mixed-effects mod-
els for each phenotype (stem height, stem diameter,
SLA, and stomatal density) using Solidago species as
the fixed effect and population as the random effect.
When necessary, all data were transformed to con-
form to normality before analysis. To test Hypoth-
esis 1 that phenotypes of each Solidago species dif-
fer when grown in soils inoculated with microbial
communities associated with a different microbiome
source, we built linear mixed effects models with
the Imer function in the Ime4 package. First, to iden-
tify traits most important to growth, physiology, and
reproduction and to reduce Type I error, we tested
for correlations between the ten phenotypes meas-
ured from the glasshouse experiment (relative growth
rate in stem height, stem diameter at maturity, shoot
biomass, root biomass, total biomass, root to shoot
ratio, SLA, flower bud break, days to flower, inflores-
cence biomass) using the cor.test function. We chose
to exclude stem diameter, total biomass, and root to
shoot ratio from the analysis because they were all
significantly correlated with two other growth phe-
notypes, shoot and root biomass (Table S6). We also
chose to exclude days to flower and inflorescence
biomass from the analysis because the experiment
ended before the majority of S. gigantea individuals
flowered. Relative growth rate, shoot biomass, root
biomass, SLA, and flower bud break were included in
the analysis.

Multiple models were used to assess Hypothesis
1. Separate models were built for the five phenotypes
(relative growth rate, shoot biomass, root biomass,
SLA, and timing of flower bud formation). When nec-
essary, all data was transformed to conform to nor-
mality before analysis. First, to test that differences in
soil microbial community composition have a general
effect on plant phenotypes regardless of plant spe-
cies, we built linear mixed effects models with micro-
biome source as a fixed effect and Solidago species,
seed population, and field soil site as random effects.
To individually identify how each Solidago species
responded to soil microbial community composi-
tion, we separated the dataset by Solidago species
and built individual linear mixed effects models for
each Solidago species with microbiome source as
a fixed effect and seed population and field soil site
as random effects. Although the random effects in
our models include fewer levels than the generally
accepted minimum range of 5-6 levels, we argue that
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philosophically these variables (field site, Solidago
seed population) are random effects and are therefore
admissible in the models even with insufficient levels.
For all models, we used the Anova function to cal-
culate ANOVA tables using Type II sums of squares,
with significance assessed for each fixed effect using
Wald X? statistics. If any of the fixed effects were sig-
nificant, we conducted post hoc Tukey contrasts using
the TukeyHSD function.

To test Hypothesis 2 that each microbiome source
is associated with distinct taxonomic and/or func-
tional soil microbial communities, we took multiple
approaches. First, we assessed microbial diversity
across microbiome source by calculating hill num-
bers based on ASV counts and unique KEGG identi-
ties using the hill_div function in the hilldiv package
(Alberdi and Gilbert 2019). Hill numbers serve as
effective numbers of diversity that provide more intu-
itive estimates of diversity compared to traditional
diversity indices based on entropy (Chao et al. 2014).
We calculated hill numbers for all orders of diversity
atq=0, g=1, and q=2, and tested for significant dif-
ferences in hill numbers between microbiome source
at each order of diversity using the div_test function
in the hilldiv package. A diversity order q=0 pro-
vides raw richness by weighting rare taxa the same
as abundant taxa and thus not accounting for species’
abundances. A diversity order q=1 weights ASVs by
their abundance but without disproportionately favor-
ing abundant taxa. A diversity order q=2 overweighs
abundant ASVs.

Second, we created Bray—Curtis distance matrices
for microbial taxonomic and functional composition
of the nine field soils. To assess variation in com-
munity composition of bacteria, fungi, and KEGGs
across microbiome source, we conducted PER-
MANOVA analysis with 9,999 permutations using
the adonis function in the vegan package (Oksanen
et al. 2019). Prior to conducting PERMANOVA we
confirmed homogeneity of dispersion across microbi-
ome source with the betadisper function in the vegan
package. We then performed a distance-based redun-
dancy analysis (db-RDA) using the dbrda function
in the vegan package to assign variation in compo-
sition of bacteria, fungi, and KEGGs to microbiome
source and geographic location. We conducted three
individual db-RDAs for bacteria, fungi, and KEGG
composition. We used the anova.cca function in the
vegan package to assess the cumulative significance
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of microbiome source and geographic location on
community composition. We partitioned the variation
in composition with respect to microbiome source
and geographic location using the varpart function
in the vegan package. To visualize composition of
bacteria, fungi, and KEGGs among soil microbiome
source, we used principal coordinate analysis (PCoA)
for ordination based on the Bray—Curtis distance
matrices.

We then performed indicator species analysis with
the multipatt function in the indicspecies package
(Caceres and Legendre 2009) to identify particular
bacteria, fungi, and KEGGs that are uniquely highly
associated with each microbiome source. Indica-
tor taxa were determined using a p-value threshold
of 0.05. Because the FUNGuild data set contained a
high amount of zero counts, we built individual zero-
inflated models for each fungal guild using the glm-
mTMB function in the glmmTMB package (Brooks
et al. 2017). We specified microbiome source as the
fixed effect, count total per soil sample (i.e. field site)
as the random effect, zi formula as soil microbiome
source, and family as poisson. For all models, we
used the Anova function in the car package (Fox et al.
2013) to calculate analysis of variance (ANOVA)
tables using Type II sums of squares, with signifi-
cance assessed for microbiome source using Wald
X? statistics. If the effect of microbiome source was
significant, we conducted post hoc Tukey contrasts
using the emmeans function in the emmeans package
(Lenth et al. 2020) and the cld function in the mult-
comp package (Hothorn et al. 2008).

To test Hypothesis 3 that specific microbial taxa
and/or functions are associated with particular Soli-
dago phenotypes, we assessed the effect of variation
in microbial indicator taxa composition on Solidago
phenotypes that responded to microbiome source
treatment. Since no KEGG identities were identified
as indicators across the three microbiome sources,
subsequent analyses were conducted only with bac-
terial and fungal indicator taxa. Using a db-RDA,
we assigned variation in composition of bacterial
and fungal indicator taxa to the three microbiome
sources and geographic location. We then extracted
the axes scores from the db-RDA model. For each
phenotype, we built a linear model that included the
two axes (CAP1, CAP2) from the db-RDA model as
fixed effects. A significant relationship between db-
RDA axes and plant phenotypes would indicate that

differences in the community of bacterial and fun-
gal indicator taxa associated with each microbiome
source are associated with shifts in plant phenotype.
To pinpoint individual bacterial and fungal indica-
tor taxa that may be associated with particular plant
phenotypes, we built linear models to test for correla-
tions between the relative abundance of each bacterial
and fungal indicator taxon and each phenotype that
showed significant responses to the axes of variation
from the indicator species db-RDA model.

All analyses were performed in R (R Core 2020).
Boxplot, and linear regression figures were made
with the ggplot2 package (Wickham 2016). Ordina-
tion figures were made with the phyloseq package
(McMurdie and Holmes 2013). Heatmap figures were
made with the Heatplus (Ploner 2020) and gplots
(Warnes et al. 2020) packages. Individuals figures
were aggregated with the patchwork package (Ped-
ersen 2020).

Results

Plant phenotype responses to soil microbiome
sources (glasshouse experiment)

While the three Solidago species overall varied sig-
nificantly in relative growth rate, shoot and root bio-
mass, and flower bud break, only root biomass dif-
fered by microbiome source (y >=6.14, p=0.04)
(Table 1). Among all three Solidago species, there
was 29% greater root biomass production when
plants were grown in inoculum from microbiome
source 1 relative to microbiome source 3 (Tukey
post hoc: p=0.05) (Fig. 2a). In partial support of
Hypothesis 1, the species-specific models produced
marginally significant results. Phenotypic responses
to microbiome source inoculum slightly varied by
Solidago species and by phenotype. Solidago caesia
shoot biomass differed among microbiome source
treatments, whereas no S. flexicaulis or S. gigantea
phenotypes differed among microbiome source
treatments (Table 2). Solidago caesia produced
8.9% more shoot biomass when grown in inocu-
lum from microbiome source 2 relative to microbi-
ome source 3 (Tukey post hoc: p=0.09) (Fig. 2b),
indicating that different soil microbiomes can shift
some plant traits.
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Table 1 Results of ANOVA showing the effect of microbiome
source on the five Solidago phenotypes measured from the
glasshouse experiment. Solidago species, seed population, and

soil inoculum field site were included as random effects in the
models. Statistically significant results are shown in bold

Plant growth Plant physiology Plant phenology
RGR Shoot Root SILA m
break
Effect df X p X P x p X P x p
Microbiome 2 1.65 0.44 4.38 0.11 6.14 0.046 3.05 0.22 0.37 0.83
source
Fig. 2 a Root biomass
8 : a 3o ; b ,

response of all Solidago a All species ab S. caesia
species (S. caesia, S. .
flexicaulis, S. gigantea) and 211 :
b shoot biomass response 251
of S. caesia to treatments ab
of microbiome source. Bars - —_
that do not share letters are ) 201 2 18,
significantly different from » . b 2
one another (p <0.05) & . g b

€ 15] : . <)

9 : S

n ¢ f I

3 : g 15

O 101 =

o« n

5_
121
Microbiome  Microbiome Microbiome Microbiome Microbiome Microbiome
source 1 source 2 source 3 source 1 source 2 source 3

Soil microbiome source

Table 2 ANOVA table of the effect of microbiome source on
the five phenotypes of each Solidago species measured from
the glasshouse experiment. Seed population and soil inoculum

Soil microbiome source

field site were included as random effects in the models. Statis-
tically significant results are shown in bold

Plant growth

Plant physiology Plant phenology

RGR Shoot Root SLA flower bud
break
Solidago species  Effect df v p e p ¥ p b p N p
S. caesia Microbiome source 2 099 061 565 006 334 0.19 153 0.46 1.88  0.39
S. flexicaulis Microbiome source 2 135 051 095 062 274 025 1.6 0.45 1.16 056
S. gigantea Microbiome source 251 028 0.65 072 1.14 056 452 0.1 3.37  0.180
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Community composition among soil microbiome
sources

Across the three soil microbiome sources, we iden-
tified over 16,000 bacterial ASVs and 2,500 fungal
ASVs. Taxonomic and functional diversity of soil
microbial communities did not vary by microbiome
source at any order of diversity (Tables S4, S5). In
partial support of Hypothesis 2, whole microbiomes
did not differ in taxonomic or genetic pathway com-
position among the microbiome sources, but distinct
indicator taxa were identified for each microbiome
source. PERMANOVA analysis revealed that taxo-
nomic and functional composition of soil microbial
communities did not vary significantly by microbiome
source (Bacteria: F=1.04, p=0.37; Fungi: F=1.10,
p=0.18; KEGGs: F=0.92, p=0.55) (Fig. 3). The
db-RDA revealed that microbiome source and geo-
graphic location cumulatively accounted for less
than 10% of variation in bacteria, fungi, and KEGG
composition (Bacteria: adj. R?=-0.013; Fungi: adj.
R?=0.053; KEGGs: adj. R?=-0.068). Microbi-
ome source accounted for less than 5% of variation
in bacteria, fungi, and KEGG composition (Bacte-
ria: adj. R2=0.011; Fungi: adj. R*=0.025; KEGGs:
adj. R?=-0.021). Similarly, geographic loca-
tion also accounted for less than 5% of variation in

bacteria, fungi, and KEGG composition (Bacteria:
adj. R?=0.026; Fungi: adj. R*=0.033; KEGGs: adj.
R%?=-0.02). The dissimilarity in microbial commu-
nity composition among the S. gigantea-associated
soils (Fig. 3) could be due to the fact that two of the
soil sites (BRC and FB) are geographically clustered
away from the other site (LPT) (Fig. 1a). Due to their
proximity to one another, these two sites share more
similar edaphic and climatic characteristics than with
the third site, which could explain the differences in
microbial community composition between LPT and
the other two sites.

Indicator species analysis identified significant
bacterial and fungal indicator taxa for each micro-
biome source. In total, 77 bacterial ASVs (out of
16,245 detected; 0.5%) and eight fungal ASVs (out
of 2,565 detected; 0.3%) were identified as indicator
taxa among the three microbiome sources (Fig. 4,
Tables S7, S8). Twenty-nine bacterial ASVs were
uniquely shared among microbiome sources 1 and 2,
whereas microbiome source 3 uniquely shared only
six bacterial ASVs with either microbiome source 1
or 2. Fungal guilds were assigned to approximately
68% of the fungal ASVs. Of those assigned to a
guild, approximately 76% had a confidence rank-
ing of “probable” or “highly probable.” Out of the
five fungal guilds (arbuscular mycorrhizal fungi,

Fig. 3 Composition of a b
a bacteria, b fungi, and - Bacteria - 0.4 Fungi
¢ KEGG pathways among X 04 3 @
the three microbiome ; [0) g ©
sources. Each data point z O. T © o
represents a field site ‘; o ® ‘; 0.0
< e © <
3 o 3]
o (€] a -0.4 o P
_0.4 T T T T T T
-0.4 0.0 0.4 -0.4 0.0 0.6
PCoA Axis 1 (24.6%) PCoA Axis 1 (18.5%)
c —_—
PN
© KEGGs o
S 0.001 o (0) Soil microbiome source
N . Microbiome source 1
® ® o) o
% 0.000 © © Microbiome source 2
: (o) 1) (0] . Microbiome source 3
[«
© -0.0014, . o
o -0.0015 0.0000 0.0015

PCoA Axis 1 (41.1%)
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Fig. 4 Heatmap of relative abundance of the 77 bacterial
ASVs produced from indicator species analysis across the
three microbiome sources. Rows represent individual ASVs.

ectomycorrhizal fungi, ericoid mycorrhizal fungi,
endophytic fungi, and plant pathogenic fungi), eri-
coid mycorrhizal fungi (y 2=11.29, p=0.004)
and endophytic fungi (y 2=20.14, p <0.0001) dif-
fered significantly among the microbiome sources
(Table S9). Both microbiome sources 1 and 2 had
approximately 1.5- and twofold greater abundance
of ericoid mycorrhizal fungi and endophytic fungi,
respectively, than microbiome source 3 (Fig. 5d, e).
KEGG composition overall did not differ among
the three microbiome sources, indicating functional
redundancy among soil microbial communities. Of the
122 pathways identified, less than a quarter accounted
for more than 1% of relative abundance of all KEGGs
among the three microbiome sources (Table S10). Of
this subset, 70% were pathways involved in metabolism
of either energy (in the form of nitrogen, methane, sulfur,
and oxidative phosphorylation), amino acids, carbohy-
drates, or lipids. The most abundant pathways across the
three microbiome sources were two pathways for ATP-
binding cassette (ABC) transporters, which accounted for
20% of the relative abundance. No KEGG pathways were
detected as indicators among the microbiome sources.
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Relative abundance

Bacterial phylum

- Acidobacteria

Microbiome source 2

Actinobacteria

Proteobacteria
Verrucomicrobia

JEL MTR BRC FB LPT

Microbiome source 3

Columns represent soil from individual field sites. Taxa of
each microbiome source with relative abundance 0.05 (5%) or
greater are color coded by phylum

Correlations between soil microbiome composition
and plant phenotypes

In support of Hypothesis 3, individual microbial
taxa were associated with specific Solidago pheno-
types. We only examined shoot biomass of S. cae-
sia as it was the only phenotype that responded to
microbiome source treatments. Axes of variation in
composition of the bacteria indicator taxa were sig-
nificantly correlated with S. caesia shoot biomass
(Axis CAP1: F=7.63, p=0.03). Relative abun-
dance of 77% (20 out of 26) of the bacterial and
fungal indicator taxa of microbiome source 3 were
significantly negatively correlated with S. caesia
shoot biomass when S. caesia was grown in inoc-
ulum of microbiome source 3 (Fig. 6, Table S11).
Although S. caesia produced slightly more shoot
biomass when grown in inoculum of microbiome
source 2 compared to that of microbiome source 3
(Fig. 2b), none of the eight bacterial indicator taxa
or the one fungal indicator taxon of microbiome
source 2 were significantly positively correlated
with S. caesia shoot biomass.
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Fig. 5 Mean abundance of a arbuscular mycorrhizal fungi
(AMF), b ectomycorrhizal fungi (ECM), ¢ plant pathogenic
fungi, d ericoid mycorrhizal fungi, and e endophytic fungi.

Discussion

Identifying ways in which the taxonomic and func-
tional composition of the soil microbiome influences
plant phenotype is a central challenge for under-
standing the overall importance of complex soil
microbial communities on plant function, as well as
how changes to soil microbial communities may in
turn affect plant function. While recent studies have
explored the importance of both whole soil microbi-
omes and individual soil microbial taxa on particular
plant phenotypes, it is also crucial to understand if
and how particular taxa and functions within com-
plex soil microbial communities influence a broad

Soil microbiome source

Emmeans are reported on the log scale. Data shown are pooled
across samples (i.e. field sites). Data that do not share letters
are significantly different from one another (p < 0.05)

spectrum of plant phenotypes and if these relation-
ships are consistent across multiple plant species.
In this study we compared the taxonomic and func-
tional composition of soil microbial communities
associated with three phenotypically distinct and
naturally occurring Solidago species and their habi-
tats (referred to as soil microbiome source above) to
understand how variation in soil microbiome com-
position alters plant phenotype. We subsequently
conducted a microbiome transfer glasshouse experi-
ment to test for plant phenotypic shifts in response to
soil microbiome source inoculum. We found that soil
microbiome taxonomic variation can shift some plant
phenotypes and that this response varied by plant
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Fig. 6 When grown in inoculum from microbiome origin 3, Solidago caesia shoot biomass is negatively correlated with relative
abundance of 20 out of the 29 indicator bacterial and fungal taxa of microbiome source 3

species, with some species more responsive to micro-
bial taxonomic variation than others. Specifically, we
identified indicator bacterial and fungal taxa associ-
ated with each microbiome source, some of which
were correlated with shifts in plant growth responses.
We found that microbiome source slightly altered
growth traits for one of the three Solidago species.
Lastly, we found that in this study plant growth traits
were more likely to be influenced by variation in soil
microbial communities than physiological or repro-
ductive traits. Together, these findings show that soil
microbial mediation of plant phenotype 1) varies by
plant traits, 2) is not consistent across plant species,
and 3) can be influenced, in part, by a small number
of microbial taxa.

Soil microbial mediation of plant phenotype varies by
plant phenotype and plant species

We found that soil microbial communities can shift
some plant phenotypes, but that the strength of micro-
bially-mediated phenotypic plasticity varies by plant
phenotype and by plant species. Across all three Soli-
dago species, plants grown in inocula from microbi-
ome source 1 produced more root biomass compared
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to plants grown in inocula from microbiome source 3.
Differences in root growth may be due to microbial
effects on nutrient availability. Nutrient availability
was likely very similar for all three Solidago species
at the beginning of the experiment because the same
amount of inoculum was used in each pot. However,
over the course of the experiment, the microbial com-
munities in the inocula may have altered nutrient
availability. Specifically, microbial communities from
microbiome source 1 may have consumed more nutri-
ents than microbial communities from microbiome
source 3, and as a result, plants grown in microbiome
source 1 inocula may have been more nutrient limited
than plants grown in microbiome source 3 inocula.
This may be an explanation for why all three species
overall produced more root biomass when grown in
microbiome source 1 microbial communities com-
pared to when grown with microbiome source 3
microbial communities. Alternatively, microbiome
source 1 microbial communities may be more ben-
eficial for root growth than S. gigantea microbial
communities. In fact, microbial communities from
microbiome sources 1 and 2 had greater amounts of
endophytic and ericoid mycorrhizal fungi relative to
microbiome source 3. While no S. flexicaulis or S.
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gigantea phenotypes responded to microbiome source
treatments, S. caesia produced slightly more shoot
biomass in microbiome source 2 inocula relative to
microbiome source 3 inocula.

It should be noted that the volume of soil inoculum
in this study accounted for<1% of the total pot soil
volume. Since increasing the amount of soil inoculum
can alter the microbial composition in the resulting
pot soil (Howard et al. 2017), it is possible that we
only identified the plant traits that are most strongly
microbially mediated, while more subtle effects
on other traits were not detected. This could in part
explain why our results contradict findings of other
studies that multiple plant physiological and repro-
ductive traits, including photosynthetic rates, stomatal
conductance, leaf water potential, chlorophyll con-
tent, leaf nitrogen content, specific leaf area (Lau and
Lennon 2011; Kannenberg and Phillips 2017; Hahn
et al. 2018; Siefert et al. 2018), flowering phenology
(Wagner et al. 2014; Panke-Buisse et al. 2015), num-
bers of flowers, seeds, and fruits (Bauer and Flory
2011; Lau and Lennon 2011, 2012; Dudenhoffer et al.
2018) and seed weight (Bauer and Flory 2011) can be
responsive to soil microbial manipulations.

In all of the forementioned studies, the microbial
inoculum accounted for at least 1% of the total soil
volume, with the median being 3.25%. One study
applied inoculum that accounted for 71% (Siefert
et al. 2018). In our study we found that neither SLA
nor timing of flower bud formation responded to
soil microbiome source treatments. While there is a
breadth of research on plant-soil biota relationships,
the majority of these studies focus on plant growth
associated traits. To determine if the relative strength
of soil microbial mediation is similar for plant growth
and non-growth traits, more studies like this one are
needed that simultaneously test for effects on growth,
physiological, and reproductive traits.

Soil microbial mediation of plant phenotype can be
influenced in part by a small number of microbial taxa

Despite similarity in overall microbiome composi-
tion among the three soil microbiome sources, we
identified specific bacterial and fungal indicator taxa
of each microbiome source. In general, Proteobacte-
ria taxa were more highly abundant in microbiome
sources 1 and 2 than in microbiome source 3, whereas
Acidobacteria taxa were more highly abundant in

microbiome source 3 than in microbiome sources 1
and 2. Within the Proteobacteria phylum, indicator
taxa of microbiome sources 1 and 2 spanned a larger
diversity of taxonomic orders including Rhizobiales,
Rhodospirillales, Burkholderiales, and Xanthomon-
adales relative to those of microbiome source 3 which
comprised the orders of Rhizobiales and Myxococca-
les. These findings highlight the importance of taxo-
nomic resolution when assessing the role of the soil
microbiome on plant phenotype as root-associated
soil is known to contain some of the highest micro-
bial biodiversity on Earth (Curtis et al. 2002; Buée
et al. 2009; Berendsen et al. 2012). In this study, we
identified over 16,000 bacterial ASVs and over 2,500
fungal ASVs among the three microbiome sources.
These findings suggest that identifying microbial dif-
ferences among focal groups may require focusing
on specific indicator taxa that have high affiliation
with the plant species or field site rather than overall
microbiome composition.

We found that differences in indicator taxa among
separate soil microbial communities may contribute
to shifts in plant phenotype even though this relation-
ship is likely not consistent across plant species. We
found that Solidago caesia produced significantly less
vegetative biomass in inocula of microbiome source 3
compared to inocula of microbiome source 2, and that
the relative abundance of 77% of the indicator taxa of
microbiome source 3 were correlated with decreases
in S. caesia shoot production. These indicator bac-
teria included mostly members of the Acidobacteria
and Actinobacteria phyla in addition to members of
the Bacteriodetes, Firmicutes, and Proteobacteria
phyla. One of the indicator fungal taxa belongs to the
Dothideomycetes class of the Ascomycota phylum,
and various Dothideomycetes taxa have been identi-
fied as plant pathogens (Ohm et al. 2013). The other
indicator fungal taxon belongs to the Chytridiomycota
phylum. Despite greater shoot production in microbi-
ome source 2 inocula, none of the microbiome source
2 indicator taxa were correlated with positive shifts of
S. caesia shoot production.

Although these indicator taxa account for a very
small proportion of the total microbial communities
identified in this study, it is notable that out of the
thousands of ASVs identified in microbiome source
2, twenty bacterial and fungal ASVs explained on
average 7% of the variation in root biomass when S.
caesia was grown in inocula of microbiome source
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2. These results add further support for the impor-
tance of rare microbial taxa (Pedrds-Alié 2012; Shade
et al. 2014; Hol et al. 2015; Jousset et al. 2017). More
specifically, these results suggest that individual soil
microbial taxa may be involved, in part, with mediat-
ing some plant traits.

Although terminology in microbial ecology is
continually evolving and some terms, such as key-
stone taxa are used liberally, we note that the indica-
tor taxa as we have identified them in this study are
not necessarily keystone taxa. Microbial keystone
taxa are often described as taxa that have a sizeable
impact on the microbiome such that their removal
can considerably alter microbiome structure and
functioning (Banerjee et al. 2018). From the scope
of this study, it is unknown whether these microbial
indicators that are correlated to differences in vegeta-
tive biomass would have similar influence if the sur-
rounding microbial composition differed. Moreover,
some sort of removal experiment would be needed to
accurately determine if these indicators are true key-
stone taxa for plant vegetative biomass (Rottjers and
Faust 2019). What is clear is, however, is that this
study builds upon considerable previous findings that
influential individual microbial taxa can be identified
from complex microbiomes. Given the immense and
often overwhelming complexity of natural soil micro-
biomes, this study demonstrates the utility of this
approach of examining correlations between indicator
microbial taxa and plant traits. Identifying individual
microbial taxa that are associated with shifts in plant
traits can pinpoint particular microbial taxa to target
for further experiments that test causative mecha-
nisms of plant trait variation. While the correlative
relationships we identified in this study are context-
specific to these particular microbial taxa and plant
species, the approach used here can be applied to any
plant-microbial system.

Other factors governing soil microbial-plant
interactions

While we did not assess microbial dormancy in this
study, it likely plays a significant role in soil microbial
mediation of plant phenotype. Dormancy, in which
individuals undergo a temporary reduced state of met-
abolic activity, has long been hypothesized to be wide-
spread among microorganisms because it allows them
to cope with environmental variability, particularly

@ Springer

when conditions are unfavorable (Stevenson 1977,
Lau and Lennon 2011). Differentiating between active
and dormant microbial taxa requires examining the
active ribosomal RNA in addition to the total riboso-
mal DNA. Since we only used rDNA-based techniques
in this study, our inferences are limited to microbial
taxa that are potentially active. However, despite the
fact that the indicator taxa accounted for a very small
amount of the diversity of each microbiome source,
evidence suggests that rare taxa may confer particular
importance within a microbiome. A previous study
examining proportions of rRNA to rDNA in temperate
lakes found that rare taxa had a higher probability of
being metabolically active than common taxa (Jones
and Lennon 2010). Combined with the observation
that soil microbiome diversity is primarily comprised
of rare taxa (Elshahed et al. 2008), our findings and
those from Jones and Lennon (2010) highlight the
importance of examining how less abundant (i.e., rare)
taxa within soil microbial communities may influence
plant phenotype. Other microbial interactions within
the soil environment also likely influenced the plant
trait variation we observed, such as differences in
microbial growth rates, differences in decomposition
via extracellular enzymes, and changes to the micro-
bial communities due to conditioning from the plants.
However, testing these mechanisms was outside of the
scope of this study.

In this study, we found high similarity in soil
microbial function (i.e. KEGG pathway composi-
tion) among the three microbiome sources, suggest-
ing functional redundancy in which the absence of
one or more microbial species does not greatly affect
the functioning of the whole microbial community
because the same functions are fulfilled by many dif-
ferent taxa (Fernandez et al. 1999; Louca et al. 2016,
2018). Functional redundancy is widespread in micro-
bial systems (Tringe et al. 2005; Allison and Mar-
tiny 2008; Bezemer et al. 2010; Martiny et al. 2013;
Nelson et al. 2016). The relatively small number of
known functions associated with soil microbial com-
munities indicates that much is still unknown about
microbial functional genes that may translate to phys-
iological differences among microbial taxa. While the
metagenomic methods we employed in this study can
be used to infer potential microbial functions, other
molecular approaches such as metatranscriptomics
can identify particular microbial genes that are being
actively transcribed (Moran 2009; Carvalhais et al.
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2012; Damon et al. 2012), and in doing so provide a
more accurate representation of the microbial func-
tions that characterize a particular soil microbiome.

Conclusions

Soil microbes represent a largely overlooked but often
important biotic factor for influencing plant pheno-
type. This may be one of the first few studies to exam-
ine how taxonomic and functional gene composition
of complex soil microbial communities influence a
suite of multiple plant phenotypes across multiple
plant species in natural, unmanaged ecosystems. Our
study shows that soil microbiomes and specific taxa
within complex soil microbial communities can alter
some plant phenotypes, but that not all plant species,
even those belonging to the same genus, will respond
to soil microbial communities in the same manner.
Thus, the belowground biotic environment is just one
of a host of important biotic factors that can mediate
plant phenotype, in addition to plant genetic back-
ground and abiotic environmental variation. While
the findings from this study are founded in ecol-
ogy theory, identifying the nuances of relationships
between soil microbes and plant phenotype has wide-
scale applications. Substantial efforts to engineer
core rhizosphere microbiomes to optimize plant pro-
duction signify the need to identify functional link-
ages between soil microbial communities and plants
(Bakker et al. 2012; Busby et al. 2017; Wallenstein
2017; Qiu et al. 2019). While soil biota may not be
a universal solution to enhance some plant pheno-
types, specific microbial taxa may be harnessed to
improve plant growth and plant tolerance to adverse
environmental conditions. This study illustrates that it
is possible to identify specific microbial taxa within a
complex soil microbial community that are associated
with shifts in some plant phenotypes.
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